Programs

Home/Programs

Day 2 : Oct 09,2024
Day 1 Day 2 Day 3
Download
Keynote Speakers
Biography: 
RamaGopal V Sarepaka has been serving as the President of R&D Operations & DTM at IR Optics (Optics & Allied Engineering Pvt. Ltd., Bengaluru, India) since January 2017. Prior to this, he held the position of Senior Vice President at Precision Optical Industry, Mumbai, India, from 2015 to 2016.
From 2009 to 2015, he contributed his expertise as a Professor at the Academy of Scientific & Industrial Research (AcSIR), under the Government of India. Between 2011 and 2015, he also served as the Chief Scientist at CSIR-CSIO, Chandigarh, India, a federally funded R&D laboratory. His extensive career began as a Scientist at CSIR-CSIO, Chandigarh, India, where he worked from 1983 to 2011. Earlier in his career, from 1978 to 1983, he was a Senior Research Fellow, completing his Masters and Doctoral studies at the Indian Institute of Technology (IIT), Delhi, India.

Abstract:

Majority of Laser Application-related Precision Optical Systems deploy non-spherical optical surfaces. These novel optical surfaces are precision engineered by using the Diamond Turning Machining (DTM) to meet the desired weight-footprint-performance criteria.
 
DTM allows high precision surfaces to be manufactured quickly and efficiently. As part of Precision Engineering envelope, Diamond Turn Machining (DTM) also involves two un-separable dimensions of material processing viz., deterministic fabrication and error free metrology. The need to qualify the fabricated component for its adherence to both dimensions and surface quality within prescribed tolerance ranges necessitates this holistic treatment of surface measurement. This qualification involves both surface metrology and surface characterization. Often these two terms, metrology and characterization are used without differentiation in between. However, it is necessary to bring clarity in this matter, by a comprehensive discussion and clear understanding of the surface features as per desired quality criteria. Metrology refers to broad (physical) measurement of the geometrical features and surface features of the component fabricated. Characterization refers to a holistic approach of assessing the features’ departures from the specifications, analyzing them in relation with each other, with inputs for their possible reduction by process optimization. The precision surfaces generated by DTM are generally assessed a) for their dimensional accuracies (whether or not, they met the specified geometrical dimensions within the prescribed tolerances) and b) for their surface quality criteria (in terms of form, figure and finish).
A well-planned evaluation methodology to assess the usefulness of the DTM generated precision components is planned to be discussed in detail in the proposed talk.
Biography:
Dr. Malathy Batumalay earned her master’s degree in engineering from the University Malaya, Malaysia, and subsequently pursued her PhD in Photonics Engineering at the same institution. Her research focuses on lasers, fiber optics, and fiber sensors. Previously, she innovated fiber optics into sensors capable of detecting changes in relative humidity and chemical solutions. She collaborates with both local and international researchers to delve deeper into the behavior and characteristics of fiber optics sensors and plasmonic sensors, resulting in numerous high-quality publications in relevant journals. Additionally, she actively serves as a reviewer for several journals and holds a committee position in the Optical Society of Malaysia (OSM), where she contributes to activities involving young researchers. Furthermore, she is also registered as a professional engineer with the Board of Engineer Malaysia (BEM) and as a Chartered Engineer with The Institution of Engineering and Technology (IET).  Presently associated with a prestigious private university in Malaysia, renowned for its expertise in Communication, Networking, and Cloud Computing, she holds pivotal leadership positions. As the Director of the Center for Data Science and Sustainable Technologies, the Deputy Chair of the University Research Committee, and the Chief Internal Auditor for Malaysia Research Assessment, Dr. Batumalay epitomizes academic excellence. Her fervent aspiration is to engage with emerging talents and prospective research candidates, thereby enhancing the academic landscape. 

Abstract: 
Surface plasmon resonance sensors have shown great growth in the last few decades. Surface plasmon resonance sensors have good sensitivity and fine resolution which made them suitable for bio-medical application and industrial quality control. However, surface plasmon resonance sensor face the challenges of costly construction, complex data processing, cross sensitivity, and the need for specialized interrogator setup. Use of machine learning algorithms can ease some of these challenges. In this brief review, the sensing principal of surface plasmon resonance sensors is discussed. Then current state of machine learning algorithms in surface plasmon resonance sensing is presented. This paper is concluded by the potential future direction of using surface plasmon resonance sensing with machine learning in building compact, affordable, and easy-to-use sensor. Here, the speaker will discuss the sensing principle of surface plasmon resonance sensors, the current challenges faced by surface plasmon resonance sensors that can be addressed by Machine learning technologies. The use of machine learning is to improve the sensing performance of surface plasmon resonance sensors and the machine learning algorithms used are discussed in detail.
Speaker Sessions
Biography
Mao-Kuen Kuo received his B.S. and M.S. degrees in Civil Engineering from National Taiwan University, Republic of China, in 1977 and 1979, respectively, and Ph.D. degree in Civil Engineering from Northwestern University, United States of America, in 1984. Presently, he is a Distinguished Professor in the Institute of Applied Mechanics, National Taiwan University. He joined the faculty of National Taiwan University in 1984. His research work was mainly on Elastodynamic Fracture Mechanics and Nondestructive Evaluation, and has been switched to quantum dots and surface plasmon, recently. He was a recipient of the 1987 Teaching Award sponsored by the Ministry of Education, Republic of China. He was also recipients of the 1987, 1988, 1989 and 2002 Teaching Award sponsored by the College of Engineering, National Taiwan University.

Abstract
This theoretical study explores the two-dimensional orbital motion of an optically bound heterodimer consisting of two gold nanoparticles (NPs) with different sizes, driven by circularly polarized light. This phenomenon arises from the interaction between the optical force and torque generated by the circularly polarized light and the reactive drag force from the surrounding medium. We calculate the optical forces exerted on each NP by analyzing the Maxwell’s stress tensor on their surfaces and simulate their trajectories using dynamic equations of motion. Our results demonstrate that, regardless of the initial conditions of the two NPs, they will become optically bound together, exhibiting rigid-body translation and rotation. Notably, the center of mass of the heterodimer undergoes an orbital revolution around a fixed point eventually. The heterodimer's orbital radius and direction of revolution are influenced by the size disparity between the two NPs. The circularly polarized light-manipulated heterodimer behaves like a boomerang, acting as a spinning rotor on a circular path. Additionally, each NP experiences spin motion, with the spin direction determined by the handedness of the circularly polarized light. These findings offer valuable insights into the optomechanical manipulation of non-monodisperse NP clusters using circularly polarized light.
Biography:

Professor Vladimir G. Chigrinov is Professor of Hong Kong University of Science and Technology since 1999. He is an Expert in Flat Panel Technology in Russia, recognized by the World Technology Evaluation Centre, 1994, and SID Fellow since 2008. He is an author of 6 books, 31 reviews and book chapters, about 333 journal papers, more than 718 Conference presentations, and 121 patents and patent applications including 50 US patents in the field of liquid crystals since 1974. He got Excellent Research Award of HKUST School of Engineering in 2012. He obtained Gold Medal and The Best Award in the Invention & Innovation Awards 2014 held at the Malaysia Technology Expo (MTE) 2014, which was hosted in Kuala Lumpur, Malaysia, on 20-22 Feb 2014. He is a Member of EU Academy of Sciences (EUAS) since July 2017. 
Since 2018 until 2020 he works as Professor in the School of Physics and Optoelectronics Engineering in Foshan University, Foshan, China. 2020-2024 Vice President of  Fellow of Institute of Data Science and Artificial Intelligence (IDSAI) Since 2021 distinguished Fellow of Institute of Data Science and Artificial Intelligence. 

Abstract:

Photoalignment and photopatterning has been proposed and studied for a long time [1]. Light is responsible for the delivery of energy as well as phase and polarization information to materials systems. It was shown that photoalignment liquid crystals by azodye nanolayers could provide high quality alignment of molecules in a liquid crystal (LC) cell. Over the past years, a lot of improvements and variations of the photoalignment and photopatterning technology has been made for photonics applications. In particular, the application of this technology to active optical elements in optical signal processing and communications is currently a hot topic in photonics research [2]. Sensors of external electric field, pressure and water and air velocity based on liquid crystal photonics devices can be very helpful for the indicators of the climate change.

We will demonstrate a physical model of photoalignment and photopatterning based on rotational diffusion in solid azodye nanolayers. We will also highlight the new applications of photoalignment and photopatterning in display and photonics such as: (i) fast high resolution LC display devices, such as field sequential color ferroelectric LCD; (ii) LC sensors; (iii) LC lenses; (iv) LC E-paper devices, including electrically and optically rewritable LC E-paper; (v) photo induced semiconductor quantum rods alignment for new LC display applications; (vi)100% polarizers based on photoalignment; (vii) LC smart windows based on photopatterned diffraction structures; (vii) LC antenna elements with a voltage controllable frequency.
Biograph:

Haroon Asghar is currently working as an Assistant Professor in Physics at the National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan. He completed his M.Sc. and M.Phil. degree in Physics from Quaid-I-Azam University, Islamabad, Pakistan in 2010, and 2012, respectively. He received his Ph.D. degree in Physics from the Department of Physics/Tyndall National Institute University College Cork, Ireland in 2018. His Ph.D. research involved the stabilization of quantum nanostructure-based semiconductor mode-locked lasers using delayed optical feedback and optical injection locking techniques. He has authored and co-authored more than 65 peer-reviewed journals, and 19 international conference proceedings. He also delivered many invited and contributed talks at international and national conferences. His current research interests include the generation of ultra-short and ultra-fast optical pulses from semiconductor mode-locked lasers, and fiber lasers and to improvement of their timing stability for potential applications in telecommunications

Abstract:

Pulsed fiber lasers have been considered significant attention in recent decades due to their potential applications in spectroscopy, micro-machining, telecommunications, and medical. To establish a pulse operation in lasers, a saturable absorber (SA) is desired in the cavity that modulates the optical losses. Therefore, to achieve a pulsed operation, SA is paramount in the fiber lasers. Various SAs based on carbon nanotubes, black phosphorous, graphene, transition metal oxides, metal-organic frameworks (MOFs), MXenes, MAX Phase materials, transition metal dichalcogenides, and semiconductor saturable-absorbers mirrors (SESAMs) have been proposed and demonstrated in fiber lasers. However, complicated optical alignment, stability, complex fabrication processes, and environmental sensitivity restrict practical applications of SAs for Q-switching and mode-locking operation. To date, many experimental techniques such as deposition of nanoparticles on a fiber ferrule, thin-film based SAs, and pulsed laser deposition technique have been proposed and demonstrated to fabricate SAs in laser cavities for Q-switching and mode-locking of optical pulses. However, the SAs including thin-film and nanoparticles-based techniques are highly unstable and difficult to align inside the laser cavity as they are environmentally sensitive and have a low damage threshold. To address this challenge, we successfully proposed and demonstrated an optimum stable ZnO-SA prepared using a pulsed laser deposition technique.
Biography:

Thiyagarajan Raman graduated Ph.D., Physics from Bharathidasan University, Trichy in 2014 and completed two Post-Doctoral Positions: (i) High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China and (ii) Technical University of Dresden (TUD), Dresden, Germany. Currently, working as a Research Scientist at Indian Institute of Technology Madras, Chennai. Briefly to say, I have adequate experience on High Pressure experiments with different kind of high pressure cells for various measurements (XRD at world-wide synchrotron facilities, Raman, electrical resistivity, and magnetization). It has been resulted in 38 peer-reviewed publications (150 impact factors) including 20 numbers of Q1 publications and 10 numbers of Q2 publications. 

Abstract: 

The magnetic and transport properties of manganite system are controlled by the electron bandwidth of eg orbitals, which is directly depends on electron transfer between A- and B- sites. The bandwidth of the systems can be effectively tuned by internal pressure like doping and/or external perturbations like magnetic field (H) and hydrostatic pressure (P). Thus, investigation on manganites under both internal and external parameters may give clear picture on the electronic nature. In this regard, this abstract is focused to investigate the effect of H and P on magnetic, magnetocaloric and transport properties of various perovskite manganites and bilayer manganites. Further, the critical behavior is also analyzed for a second-order ferromagnetic phase transition of perovskite manganites.
P compresses the lattice constants, increases the Mn-O-Mn bond angle, makes the unit cell more cubic, and hence reduces the local distortion of the MnO6 octahedra, Jahn-Teller distortion and electron-lattice coupling. As a result, the overlap of the Mn3+ eg orbital and O2- 2p orbital is increased - thus enhancing the electron hopping rate through Zener Double-Exchange interaction. Indeed, for proposed manganites with paramagnetic insulating (PMI) to ferromagnetic metallic (FMM) phase transitions, TC increases almost linearly with P. But, P effect on TC is larger than that predicted by band theory. This implies that the electron-phonon coupling is also reduced by P. Thus, the manganites are sensitive to all types of perturbations internal or external pressure and they strongly influence the magnetic, magnetocaloric and transport properties of the manganite systems.
Poster Session
Biography
 
Dr. Walter D. Furlan received his PhD in Physics from the National University of La Plata (Argentina) in 1988. He is now Professor of Optics at the University of Valencia (Spain) since 2010. His research spans the field of Optics, initially focusing on phase-space formalisms and later on the design and applications of diffractive optical elements with aperiodic geometries.: He is currently the co-director of the "Diffractive Optics Group", where the research primarily targets the design of structured diffractive lenses and their applications in optical trapping and ophthalmology.

Abstract

In this communication, we present a new kind of diffractive-kinoform lenses characterized by the phase distribution of the Silver Mean (SM) sequence. The focusing properties of these aperiodic lenses are analytically studied. It is shown that, under monochromatic illumination, the SM lenses direct most of the incoming light into four foci whose focal lengths are related to the Silver ratio. Two different photonics applications are proposed. First, we present the implementation of multi-trap optical tweezers. We show that The quadrifocal- kinoform feature of the SM lenses enables multiple axial trapping, providing an alternative method for
three-dimensional manipulation. Positioning particles along a line at controlled distances allows for the exploration of interactions between them under laser irradiation.
Second, we propose the application of this approach in ophthalmology to design a multifocal intraocular lens. Multifocal lenses are currently the most popular surgical alternative for correcting presbyopia and cataracts. We show that under broadband illumination, the superposition of the different foci creates an extended depth of focus in the intraocular lens. Finally, the application of this type of aperiodic lens in other fields, such as microscopy or quantum computing, is also suggested.