Programs

Home/Programs

Day 1 : Mar 27,2025
Day 1 Day 2 Day 3
Agenda Download
Keynote Speakers
Biography:
Chongbi Li is a Professor in Biochemistry and biotechnology Ph D. Former president, Life Sciences of College, Zhaoqing University; Director in Bioharmaceutical Research and Development Center of Zhaoqing University.  In Sep.1997-2000 he  joined the State Keylaboratory for biocontrol, Zhongshan University to prepare a Ph.D thesis on molecular virology, molecular biology and cell biology of insect baculovirus. My research subject includes the purification of Spodoptera liturmulticapsidnucleopolyhedrovirus (SpltMNPV), cloning and sequencing of SpltMNPV glycoprotein 37 (gp37) gene and inhibitor apoptosis protein 2(iap2) gene etc. and Properties of the Specific Anti- influenza Virus Transfer Factor. In 2000-2002 he joined a biopharmaceutical technology company for one year's postdoctoral training in Beijing. And I presided at a program of endostatin to tag Lactococcus Lactis strains as a oral therapeutic reagent for the tumor. From 2002-present. He  was engaged in biology department of Zhaoqing university for teaching biochemistry and gene engineering courses, and also have been charging in the work of biopharmaceutical research and development. Now, I am occupiedat the principal of life college of Zhaoqing university in China. More than 50 papers published in foreign and home journals, 4 patents were applied. One patent was got sanction. And awards were gotten two times in recent years. More than 50 papers published in foreign and home journals, 4 patents were applied. One patent was got sanction. And awards were gotten two times in recent years.

Abstract:
Qixing Jianhua (Hylocerei Undati Flos) is not only a specialty plant of Zhaoqing, but also has a lot of attention because it contains a variety of active ingredients. In order to explore the role of flavonoids in the seven-star sword-flower, by designing single factor test and L9 (Fourth power of 3) orthogonal test, the effects of different extraction time, ethanol concentration and particle size on the total flavonoids yield and process optimization were studied. After ultrasonic and 95% alcohol extraction, followed by ethyl acetate extraction, thin plate chromatography and other identification. Antioxidant ability analysis of the extract was carried out by salicylic acid method and antimicrobial test. And then the moisturizing anti-oxidation cream was prepared by using sword-flower alcohol extract. The results showed that the extraction rate was highest at 95% ethanol concentration, 1:60 of material to liquid ratio, 60 min extraction time, and 70 degrees Celsius extraction temperature, reaching 13.41 mg/g. The antibacterial effect of the extract is obvious, and it has obvious scavenging effect of hydroxyl radicals. Therefore, this paper has important theoretical and practical significance for the further study and application of flavonoids in the future. It can be predicted that the flavonoids extracted from Qixing sword flower, a kind of traditional Chinese medicine in Zhaoqing, will be widely used in the fields of food, medicine and health in the future.
Biography:
Prof. Ali Soofastaei is a seasoned expert in artificial intelligence and data analytics, with a rich background in transforming industries through innovative technological solutions. Currently the CEO of Innovative AI and an academic editor for "Advanced Analytics for Industry 4.0," Ali has over a decade of experience in applying AI-driven methodologies to optimize processes and enhance decision-making in fields such as mining, manufacturing, and healthcare. His recent projects include pioneering work on digital twins, predictive analytics, and decarbonization in industrial settings. With a passion for data-driven storytelling, Ali is an advocate for the sustainable and ethical use of AI in critical industries, particularly in healthcare, where he focuses on personalized care and operational efficiency. A thought leader in his field, Ali is also an active keynote speaker at international conferences, where he shares insights on the intersection of AI, biosciences, and sustainability.

Abstract:
The healthcare industry stands at a pivotal juncture where artificial intelligence (AI) and data analytics are transforming every facet of patient care, from diagnostics to treatment and beyond. This presentation will explore the profound role of AI-driven predictive analytics in shaping a more sustainable and patient-centered healthcare system. By integrating vast amounts of real-time patient data with advanced machine learning models, predictive analytics enables healthcare providers to identify patterns, anticipate patient needs, and personalize treatments with unprecedented accuracy. This talk will highlight the critical applications of AI in early disease detection, population health management, and personalized treatment planning. Key examples will illustrate how predictive models are being used to monitor chronic diseases, prevent adverse health events, and streamline clinical workflows, thus ensuring that healthcare resources are allocated efficiently and patient outcomes are optimized. The session will also address the unique challenges of implementing AI in healthcare, including data privacy, ethical concerns, and integration with existing healthcare infrastructure. Additionally, it will emphasize the importance of sustainable AI practices, focusing on reducing the carbon footprint of AI models and advocating for energy-efficient algorithms. By discussing the intersection of AI technology with bioscience advancements, this presentation aims to provide attendees with actionable insights into leveraging predictive analytics to create a more resilient, accessible, and sustainable healthcare ecosystem. Attendees will leave equipped with a deeper understanding of how AI can empower healthcare providers and policymakers to create a future where medical care is not only innovative but also equitable and sustainable.
Biography:
Dr. Mònica Mir received the Degree in Chemistry from University Rovira i Virgili, Spain in 1998. In 2006 she received her PhD in biotechnology in the same University. She realized different predoctoral stages at the Institute of Microelectronic in Demokritos, University of Bath and National Hellenic Research Foundation. From 2007, she held a postdoctoral position in Max Planck Institute for Polymer Research, Germany. Since 2008, she joins the Institute for Bioengineering of Catalonia (IBEC), Spain as Senior CIBER researcher, combined with her teaching as associate professor at the University of Barcelona. Along her carrier she was managing European, National and industrial research projects, supervising PhD ad Master students and collaborating in congresses organization as coordinator and scientific committee. Her main scientific interests are focused on electrochemical biosensor, integrated in lab-on-a-chip and point of care technologies, implantable sensors, and organ-on-a-chip for biomedical applications.

Abstract:
Nanotechnology is a cutting-edge field that spans many possibilities for the study and treatment of different diseases. A key tool recently developed in biomedical engineering research thanks to this technology is implantable sensors.The development of miniaturized implantable biosensors in the human body has revolutionized the field of medicine in terms of diagnosis, treatment and monitoring of numerous conditions and diseases, such as cardiovascular disorders and metabolic problems. One of the great advances that these sensors have introduced is their ability to monitor clinical data practically in real time, obtaining records of the body's biophysical and biochemical parameters in a continuous way and for extended periods. This talk will present an overview of implantable sensors in blood vessels, followed by our developments in this field for different applications, such as ischemia monitoring for fetal growth restriction monitoring and cardiac disease biomarkers for an early diagnosis. Future trends and the advantages and limitations of this technology will be discussed.

Biography:
Aruna Sharma (nee Bajpai) W/O Hari Shanker Sharma is currently working as Medical Administrator in Uppsala University Hospital, Division of Anesthesiology & intensive Care Medicine. She is born in Unnao and married to Hari Sharma in April 1979. After graduating in Indian Medicine Aruna Sharma went to Free University Berlin, University Hospital, Kilinikum Steglitz, West Berlin (at that time) in Germany (1989-1991) for advance training in Neuropathology. She also worked as expert neurpathologist on Electron microscopy in School of Biosciences, Karl Marx University, Leipzig, German Democratic Republic (GDR), East Germany (now Leipzig University, Leipzig, Germany) briefly and then came to Uppsala University in 1991. She actively participated in research works on CNS injury with Hari Sharma in Institute of Neuropathology since 1992-1996 and then in Neuroanatomy 1997-2003. She joined Department of surgical Sciences, University Hospital in April 2004. She is actively working on Nanoneurotoxicity of engineered metal nanoparticles and silica dust in animal models of stress and brain injury sponsored by European Aerospace of Research & Development (EOARD), London, UK and Wright Patterson Air Force Research Laboratory, Dayton, OH, USA. She is then key investigator of age-related toxicity of nanoparticles in relation to their sizes in mammals under normal and in hyperthermic conditions. This research works was acclaimed at Society for Neuroscience Meeting in Washington DC Nov 12-16, 2011. Based on her research in Nanoneurosciences she is nominated as member of Swedish Academy of Pharmaceutical Sciences, Stockholm in 2011. She is active member of Society for Neurosciences, Washington DC, USA, International Brain Edema Society, Tokyo, Japan, International Brain Research Organization, Paris, France, New York Academy fo Sciences, New York, USA and American Association of Advancement of Science, Washington DC. Her administrative capability in medicine and research acquired International Women of the Year award 2009 (for Sweden) and enrolled her in prestigious top 10 Women administrators who set the standards by International Women review Board, USA in 2010. She is also the acquisition editor of key neuroscience journals namely American Journal of Neuroprotection and Neuroregeneration (AJNN) and Journal of Nanaoneuroscience (JNS) published by American Scientific Publishers, Los Angeles, CA, USA. In the capacity of Organizing secretary she organized several International neuroscience congresses in Europe and in other parts of the World, namely, 7th Global College of Neuroprotection and Neuroregenartion (GCNN) Marc 3-7, Stockholm, Sweden, 8th GCNN Congress, Amman, Jordan, April 22-25, 2011, 9th GCNN Congress in Xi’an, China, May 3-7, 2012. She is the guest editor of Journal of Nanoneuroscience April 2012; Central Nervous System Neurological Disorders drug Target Feb 2012 and actively contributed key chapters in scientific protocols and reviews in Neuroscience Book series including Progress in Brain Research, International Review of Neurobiology. She received Albert Nelson Lifetime Achievement Award for her continuous leadership in Science in 2020. She regularly practices Yoga and meditation and her hobbies include cooking, travel, photography and reading philosophical books at leisure. 

Abstract:
Sleep deprivation (SD) induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism [1]. Thus, it is likely that sleep deprivation is one of the pre-disposing factors in precipitating Alzheimer’s disease (AD) brain pathology [2]. Our previous studies indicate significant brain pathology following sleep deprivation or AD [3]. In this investigation nanodelivery of cerebrolysin together with monoclonal antibodies to amyloid beta peptide (AbP), phosphorylated tau (p-tau) and tumor necrosis factor alpha (TNF-a) in sleep deprivation induced superior neuroprotection in AD exacerbated by sleep deprivation is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AbP with p-tau and TNF-a profoundly induces superior neuroprotection in brain pathology in AD exacerbated by sleep deprivation, not reported earlier. There was a significant reduction in the blood-brain barrier (BBB) breakdown, brain edema formation and neuropathological consequences in AD with sleep deprivation caused by combined nanowired delivery of the above agents as compared to saline treatments. The possible mechanism of neuroprotection is discussed. 


Biography:
Paulo C. DE MORAIS, PhD, was full Professor of Physics at the University of Brasilia (UnB) – Brazil up to 2013, Appointed as UnB’s Emeritus Professor (2014), Appointed as Guest Professor of Huazhong University of Science and Technology – China (2011), Visiting Professor at Huazhong University of Science and Technology (HUST) – China (2012-2015), Appointed as Distinguished Professor at Anhui University (AHU) – China (2016-2019), Appointed as Full Professor at Catholic University of Brasília (UCB) – Brazil (2018), Appointed as CNPq-1A Research Fellowship since 2010. 2007 Master Research Prize from UnB, 2008-member of the European ERA NET Nanoscience Committee, Member of the IEEE-Magnetic Society Technical Committee, Senior Member of the IEEE Society, 2012 China’s 1000 Foreign Expert Recipient, and 2012 Academic Excellence Award from Brazilian Professor’s Union. He held two-years (1987-1988) post-doc position with Bell Communications Research – New Jersey, USA and received his Doctoral degree in Solid State Physics (1986) from the Federal University of Minas Gerais – Brazil. He graduated in both Chemistry (1976) and Physics (1977) at UnB. Professor Morais is member of the Brazilian Physical Society and the Institute of Electrical and Electronics Engineers – IEEE. He has served as referee for more than 50 technical journals, takes part of the Editorial Board of more than 15 technical journals and has conducted research on nanomaterials for over 40 years. He has delivered 170 Invited Talks all over the World. He is known for his research in preparation, characterization and applications of nanosized materials (magnetic fluid, magnetoliposome, magnetic nanoemulsion, magnetic nanocapsule, magnetic nanofilm, magnetic nanocomposite, nanosized semiconductors, polymeric dots, carbon dots, and graphene quantum dots). With about 500 published papers in peer reviewed journals, more than 12,500 citations and 16 patents, he has appeared in recent World ranking of top scientists, such as 2020-Stanford, 2022-Research.com, 2023-AD Scientific Index, and 2023-Research.com.

Abstract:
This plenary talk presents a prospective immersion on the Hill’s model, introduced more than a century ago, aiming to explain the binding of oxygen molecules to hemoglobin and subsequently used to explain a huge variety of biological data. Evaluation of cell viability challenged by a particular bioactive compound, including bioactive nanomaterials, is among the experiments Hill’s model has been applied. Nevertheless, even after half of a century has passed since the “NANO” term was coined and introduced into the scientific literature, only recently emerged a proposal on how to incorporate the morphological characteristics (mean size and size dispersity) of a nanomaterial in the description of in vitro bioassays, as for instance cell viability assays. Moreover, in recent years, the standard Hill’s model has been used to describe cell viability assays performed with nanomaterials. In view of this long-standing gap in the literature, the present talk aims to present a recently-developed Hill-inspired model that successfully accounts for the description of MTT assays performed with nanomaterials, emphasizing the impact of the mean size and size dispersity in the biological response. The concept of “biological polydispersity” of a nanomaterial is then introduced, meaning the size characteristics of a nanomaterial while recognized by a particular biological assay. Last, but not least, for a nanomaterial, the “biological polydispersity” is compared with the morphological polydispersity, the latter assessed from high-resolution microscopy micrographs.
Biography:
Dr. Malathy Batumalay earned her master’s degree in engineering from the University Malaya, Malaysia, and subsequently pursued her PhD in Photonics Engineering at the same institution. Her research focuses on lasers, fiber optics, and fiber sensors. Previously, she innovated fiber optics into sensors capable of detecting changes in relative humidity and chemical solutions. She collaborates with both local and international researchers to delve deeper into the behavior and characteristics of fiber optics sensors and plasmonic sensors, resulting in numerous high-quality publications in relevant journals. Additionally, she actively serves as a reviewer for several journals and holds a committee position in the Optical Society of Malaysia (OSM), where she contributes to activities involving young researchers. Furthermore, she is also registered as a professional engineer with the Board of Engineer Malaysia (BEM) and as a Chartered Engineer with The Institution of Engineering and Technology (IET).  Presently associated with a prestigious private university in Malaysia, renowned for its expertise in Communication, Networking, and Cloud Computing, she holds pivotal leadership positions. As the Director of the Center for Data Science and Sustainable Technologies, the Deputy Chair of the University Research Committee, and the Chief Internal Auditor for Malaysia Research Assessment, Dr. Batumalay epitomizes academic excellence. Her fervent aspiration is to engage with emerging talents and prospective research candidates, thereby enhancing the academic landscape. 

Abstract: 
Surface plasmon resonance sensors have shown great growth in the last few decades. Surface plasmon resonance sensors have good sensitivity and fine resolution which made them suitable for bio-medical application and industrial quality control. However, surface plasmon resonance sensor face the challenges of costly construction, complex data processing, cross sensitivity, and the need for specialized interrogator setup. Use of machine learning algorithms can ease some of these challenges. In this brief review, the sensing principal of surface plasmon resonance sensors is discussed. Then current state of machine learning algorithms in surface plasmon resonance sensing is presented. This paper is concluded by the potential future direction of using surface plasmon resonance sensing with machine learning in building compact, affordable, and easy-to-use sensor. Here, the speaker will discuss the sensing principle of surface plasmon resonance sensors, the current challenges faced by surface plasmon resonance sensors that can be addressed by Machine learning technologies. The use of machine learning is to improve the sensing performance of surface plasmon resonance sensors and the machine learning algorithms used are discussed in detail.
Biography: 
RamaGopal V Sarepaka has been serving as the President of R&D Operations & DTM at IR Optics (Optics & Allied Engineering Pvt. Ltd., Bengaluru, India) since January 2017. Prior to this, he held the position of Senior Vice President at Precision Optical Industry, Mumbai, India, from 2015 to 2016. From 2009 to 2015, he contributed his expertise as a Professor at the Academy of Scientific & Industrial Research (AcSIR), under the Government of India. Between 2011 and 2015, he also served as the Chief Scientist at CSIR-CSIO, Chandigarh, India, a federally funded R&D laboratory. His extensive career began as a Scientist at CSIR-CSIO, Chandigarh, India, where he worked from 1983 to 2011. Earlier in his career, from 1978 to 1983, he was a Senior Research Fellow, completing his Masters and Doctoral studies at the Indian Institute of Technology (IIT), Delhi, India.

Abstract:
Majority of Laser Application-related Precision Optical Systems deploy non-spherical optical surfaces. These novel optical surfaces are precision engineered by using the Diamond Turning Machining (DTM) to meet the desired weight-footprint-performance criteria. DTM allows high precision surfaces to be manufactured quickly and efficiently. As part of Precision Engineering envelope, Diamond Turn Machining (DTM) also involves two un-separable dimensions of material processing viz., deterministic fabrication and error free metrology. The need to qualify the fabricated component for its adherence to both dimensions and surface quality within prescribed tolerance ranges necessitates this holistic treatment of surface measurement. This qualification involves both surface metrology and surface characterization. Often these two terms, metrology and characterization are used without differentiation in between. However, it is necessary to bring clarity in this matter, by a comprehensive discussion and clear understanding of the surface features as per desired quality criteria. Metrology refers to broad (physical) measurement of the geometrical features and surface features of the component fabricated. Characterization refers to a holistic approach of assessing the features’ departures from the specifications, analyzing them in relation with each other, with inputs for their possible reduction by process optimization. The precision surfaces generated by DTM are generally assessed a) for their dimensional accuracies (whether or not, they met the specified geometrical dimensions within the prescribed tolerances) and b) for their surface quality criteria (in terms of form, figure and finish).
A well-planned evaluation methodology to assess the usefulness of the DTM generated precision components is planned to be discussed in detail in the proposed talk.

Abstract:
The experimental evidences strongly suggest that embryonic stem (ES) cell lines can be created from human blastocyst-stage embryos and stimulated to develop into practically all types of cells found in the body. Cellular treatments produced from ES cells have attracted fresh interest. The potential utility of ES cells for gene therapy, tissue engineering, and the treatment of a wide spectrum of currently untreatable diseases is simply too vital to ignore; however, further improvements in our understanding of the basic biology of ES cells are required to deliver these forms of therapy in a safe and efficient manner. In this meeting, I'll share my research using ES cells and how they can be used to treat hematopoietic and neurodegenerative disorders.

Biography:
Dr. Anand Srivastava is a Chairman and Cofounder of California based Global Institute of Stem Cell Therapy and Research (GIOSTAR) headquartered in San Diego, California, (U.S.A.). The company was formed with the vision to provide stem cell based therapy to aid those suffering from degenerative or genetic diseases around the world such as Parkinson's, Alzheimer's, Autism, Diabetes, Heart Disease, Stroke, Spinal Cord Injuries, Paralysis, Blood Related Diseases, Cancer and Burns. Dr. Srivastava has been associated with leading universities and research institutions of USA. In affiliation with University of California San Diego Medical College (UCSD), University of California Irvine Medical College (UCI), Salk Research Institute, San Diego, Burnham Institute For Medical Research, San Diego, University of California Los Angeles Medical College (UCLA), USA has developed several research collaborations and has an extensive research experience in the field of Embryonic Stem cell which is documented by several publications in revered scientific journals. Furthermore, Dr. Srivastava’s expertise and scientific achievements were recognized by many scientific fellowships and by two consecutive award of highly prestigious and internationally recognized, JISTEC award from Science and Technology Agency, Government of Japan. Also, his research presentation was awarded with the excellent presentation award in the “Meeting of Clinical Chemistry and Medicine, Kyoto, Japan. Based on his extraordinary scientific achievements his biography has been included in “WHO IS WHO IN AMERICA” data bank two times, first in 2005 and second in 2010.
Biography:
24    years of experience in Health Care Industry, working with Globe multinational companies in 3 different markets (Africa, middle East Turkey, and Asia Pacific) with multinational corporation.  He recived Biomedical Engineering with Excellent Honours , also received MIBA (Master International Business Administration) from ESLSCA France @ Strategy + Marketing Certified from  ISRRT & BRACCO Education Licensing for Radiology Imaging certified. Certified Lean Six Sigma for management (green belt) . Currently Business development manager UNILABS/Tibbiyah SAUDI ARABIA ,  sever experience at Medical  Imaging / oncology Centres as a Consultant to improve ROI, Clinical outcome, increase operation efficiency, patient’s workflow optimization and control/reduced cost. Expert in Cardiology / Neurology and Oncology practice at hospital landscape.  

Abstract:
Radiomics and artificial intelligence (AI) are revolutionizing the field of medical imaging, offering unprecedented opportunities for enhanced diagnosis, prognosis, and treatment planning. This talk will explore the transformative impact of these technologies on clinical practice and research. Radiomics involves the extraction of quantitative features from medical images, enabling the conversion of visual data into high-dimensional, mineable data. These features can reveal underlying pathophysiological processes that are not discernible to the naked eye, leading to more accurate and personalized patient care. By integrating radiomics with AI, particularly machine learning algorithms, we can develop predictive models that improve diagnostic accuracy and patient outcomes. AI in imaging leverages deep learning techniques to analyze vast amounts of data, automating the detection and characterization of abnormalities. This capability not only enhances the efficiency and accuracy of radiological interpretations but also addresses the growing demand for imaging services in healthcare systems. AI algorithms can assist in detecting diseases at earlier stages, optimizing treatment plans, and monitoring disease progression with greater precision. The synergy between radiomics and AI holds the promise of advancing precision medicine. This talk will highlight key developments in the field, including the application of AI in oncological imaging for tumor characterization, the prediction of treatment responses, and the assessment of disease progression. Furthermore, it will address the challenges and future directions in implementing these technologies, such as data standardization, validation, and integration into clinical workflows. In conclusion, the fusion of radiomics and AI in medical imaging is set to revolutionize healthcare, providing clinicians with powerful tools for better patient management. This talk aims to provide an overview of the current landscape, recent advancements, and future prospects of radiomics and AI in imaging, underscoring their potential to enhance patient care and outcomes.
Biography:
Hari Shanker Sharma, FRSM (UK), Director of Research (Int. Expt. ECNSIR), University Hospital, Uppsala University is Professor of Neurobiology (MRC), Docent in Neuroanatomy (UU) and is currently affiliated with Department of Surgical Sciences, Division of Anesthesiology and Intensive Care Medicine, Uppsala University, Sweden. Hari Sharma was born on January 15, 1955 in an Industrialist town Dalmianagar (Bihar), India. He did his Bachelor of Science with Honors from the prestigious L. S. College Muzaffarpur in 1973 and secured 1st position in his batch. He obtained his Master Degree from Bihar University with special expertise in Cell Biology in 1976 and awarded Gold Medal of Bihar University for securing 1st potion in the 1st Class. Hari Sharma joined the group of Professor Prasanta Kumar Dey, a neurophysiologist by training in the Department of Physiology, Institute of Medical; Sciences, Banaras Hindu University, Varanasi in 1977 to obtain Doctor of Philosophy Degree (D.Phil.) in Neurosciences and was awarded Ph.D. in 1982 on “Blood-Brain Barrier in Stress.” Hari Sharma after carrying out a series of Government of India funded Research Projects on the BBB and brain dysfunction (1982–1987), joined the lab of Neuropathology at Uppsala University with Professor Yngve Olsson in 1988 to investigate passage of tracer transport across the BBB caused by stress or traumatic insults to the Brain and Spinal cord at light and electron microscopy. Dr. Sharma awarded the prestigious Alexander von Humboldt Foundation Fellowship of German Government (1989–1991) to work on hyperthermia induced BBB dysfunction at the ultrastructural level in the laboratory of Professor Jorge Cervós-Navarro (a living “Legend in Neuropathology in Europe”). Dr. Sharma joined again Uppsala University and established a network of collaboration on “Experimental CNS Injury Research Group” as a lead investigator with eminent collaborators in various parts of Europe, USA, and Australia (1991–). On his work on hyperthermia Dr. Sharma received the prestigious Neuroanatomy award “Rönnows Research prize” of Uppsala University for “best neuroanatomical research of the year 1996” followed by the Award of the Degree of Doctor of Medical Sciences of Uppsala University in Neuroanatomy in 1999 and selected for the Best Thesis Award of the Medical faculty, “The Hwassers Prize” of 1999. On his meticulous works on the Blood Brain barrier and Brain edema (2000–2003) Dr. Sharma earned the prestigious title of “Docent in Neuroanatomy” of Medical Faculty, Uppsala University in April 2004. Currently his main research interest is Neuroprotection and Neuroregeneration, in relation to the Blood-brain barrier in stress, trauma, and drugs of abuse in health and disease. Dr. Sharma on his research on brain pathology and neuroprotection in different models received the prestigious awards from The Laerdal Foundation of Acute Medicine, Stavanger, Norway, in 2005 followed by Distinguished International Scientists Collaboration Award by National Institute on Drug Abuse (NIDA), Baltimore, MD (2006–2008). His recent work on 5-HT3 receptor mediated neuroprotection in morphine withdrawal induced neurotoxicity won the coveted prize of Best Investigator Award 2008 and Best Scientific Presentation by European Federation of the International Association for Study of Pain (ISAP), and Awarded during their VI Annual Meeting in Lisbon, September 9–12, 2008. His recent research is aimed to find out the role of nanoparticles in Neurodegeneration and Neuroprotection using various treatment strategies that is supported by European Aerospace Research and Development (EOARD), London, UK and US Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, Oh, USA. On his works on Blood–brain barrier in hypertension and diabetes together with Romanian colleagues, University of Medicine and Pharmacy “Iuliu Hatieganu,” Cluj-Napoca, Romania awarded Dr. Sharma with Honorary Doctorate of Medical Sciences in 2009. Dr. Sharma’s work over 30 years on the blood-brain barrier and brain edema won him the US Neurosurgeon Dr. Anthony Marmarou Award (2011) by the International Brain Edema Society at their 15th Congress in Tokyo, Japan, November 20–24, 2011. His works on Nanoneuroscience and development of nanomedicine to treat the CNS injuries has won accolades at various Government and International Scotties or Organization across the World. Accordingly Dr Sharma was decorated with the most prestigious “Hind Rattan Award 2012” on the eve of Republic Day of India 25th January 2012 and Mahatma Gandhi Pravasi Gold Medal on October 12, 2012 in House of Lords, London, UK. Hari Sharma was also invited to organize and chair Nanosymposium in Society for Neuroscience meetings in Chicago (2009), San Diego (2010), Washington DC (2011) and New Orleans (2012). Hari Sharma has published over 380 research papers, 75 reviews, 12 monographs, and 70 international book chapters and edited 15 book volumes. He served as Guest Editor of Curr. Pharm. Desig. (2005, 2007, 2010–); J. Neural. Transmiss. (2006, 2011–) and is founding Editor-in-Chief of Int. J. Neuroprotec. Neuroregen. (2004–), UK. Dr. Sharma is on board of various International Journals including CNS and Neurological Disorders-Drug Targets, USA, Journal of Neurodegeneration and Regeneration, USA (2009–) and is associate editor of Journal of Nanoscience and Nanotechnology (Nanoneuroscience 2006–), USA, Review Editor—Frontiers in Neuroengineering (2007–), Frontiers in Neurorestoratology, and Associate Editor of Frontiers in Aging Neuroscience (2008–), Frontiers of Fractal Physiology (2010–), Switzerland, Journal of Neurorestoratology, Dove Medical press, London, UK (2012–), Webmed Central, Neurology Faculty, Advisory Board Member (2010–), World Journal of Pharmacology (2011–), Journal of Physical Medicine and Rehabilitation, USA (2012–). Dr. Sharma served as volume editor of several progress in Brain research series (Volumes 104, 115, 162 and 180), International review of Neurobiology (Volume 82 and 102) and other Springer Volumes on Spinal cord injury (1988) and Handbook of Neurochemistry (2009) apart from stand alone books (Elsevier, Springer and Academic Press since 1994). Dr. Hari Sharma is invited to join several National Academies of repute including New York Academy fo Science, USA (since 1994–); International Academy of Stress, New York (2003–), Swedish Academy of Pharmaceutical Sciences (2010–). Dr. Sharma has served as an expert evaluator and advisor to various Boards, Councils and Institutions for their Research Grants including Wellcome Trust, London, UK (2011–); Catalan Agency for Health Information and Quality, TV3 (2010–), European Commission Projects (2002–), European Nanomed Council (2009–), Ministry of Health Science Foundation; Medical research Council and University Commission of Grants in various countries in Europe, USA, UK, Canada, Hong Kong, Singapore and in Australia

Abstract:
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer’s disease (AD) in military personnel at later stages of life [1]. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (AbP) into the brain fluid compartments precipitating AD brain pathology [2]. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicting a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology [3]. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD by CHI based on our own investigations. Our observations show that neurotrophic factors, MSCs and neuronal NOS play key roles in brain pathology of AD exacerbated by CHI, not reported earlier.
Speaker Sessions
Biography:
Fahd Nasr is a professor specializing in Molecular Genetics and Functional Genomics at the Faculty of Sciences, Lebanese University. He earned his PhD in Molecular Genetics and Cell Biology from Pierre and Marie Curie Paris VI University and has completed extensive postdoctoral training in yeast genetics and molecular biology. With a focus on Saccharomyces cerevisiae as a model organism, Prof. Nasr's research spans the genomic and post-genomic eras, examining the molecular mechanisms underlying cell cycle regulation and their implications in tumorigenesis. Prof. Nasr has been a member of the Lebanese Association for the Advancement of Science since 2000 and has significantly contributed to Lebanon’s higher education system, designing joint Master’s and postgraduate courses, such as "Yeast Genetics and Molecular Biology" and "Translational Biology." His educational philosophy centers on student empowerment through critical thinking, inquiry, and ethical responsibility, preparing students to address global challenges like biodiversity loss, climate change, and emerging pathogens.

Abstract:
Fahd Nasr is a professor specializing in Molecular Genetics and Functional Genomics at the Faculty of Sciences, Lebanese University. He earned his PhD in Molecular Genetics and Cell Biology from Pierre and Marie Curie Paris VI University and has completed extensive postdoctoral training in yeast genetics and molecular biology. With a focus on Saccharomyces cerevisiae as a model organism, Prof. Nasr's research spans the genomic and post-genomic eras, examining the molecular mechanisms underlying cell cycle regulation and their implications in tumorigenesis. Prof. Nasr has been a member of the Lebanese Association for the Advancement of Science since 2000 and has significantly contributed to Lebanon’s higher education system, designing joint Master’s and postgraduate courses, such as "Yeast Genetics and Molecular Biology" and "Translational Biology." His educational philosophy centers on student empowerment through critical thinking, inquiry, and ethical responsibility, preparing students to address global challenges like biodiversity loss, climate change, and emerging pathogens.
Biography:
Prof. Islam Al-Dababsekh is a distinguished medical professional and researcher specializing in regenerative medicine, genetics, and stem cell therapies. As the Director of I.D. Stem Cells and Genome Institute and founder of I.D. Medical Group, he combines clinical expertise with innovative research to pioneer advancements in stem cell-based treatments. With a Ph.D. in cardiovascular surgery and professorship in genetics, Prof. Al-Dababsekh’s career spans over two decades. His diverse medical expertise includes general, vascular, and endovascular surgery, as well as dermatology. He has contributed significantly to the field through clinical practice, groundbreaking patents, and international presentations. A member of ISSCR and other prestigious associations, he has been at the forefront of regenerative medicine since 2017, focusing on cutting-edge therapies to enhance human health. Prof. Al-Dababsekh’s commitment to advancing science is reflected in his leadership roles, research, and dedication to improving patient outcomes worldwide.

Abstact:
Introduction:
Infertility is a prevalent concern globally, with male infertility, including conditions like azoospermia, posing significant challenges. Conventional treatments are limited, prompting interest in stem cell therapies. In the MENA region, high infertility rates underscore the need for accessible treatments. This study explores using MSCs to generate spermatocytes, potentially revolutionizing male infertility treatments by leveraging advancements in stem cell technology. 

Literature Review:
The study builds on global research exploring stem cell solutions for infertility. Unlike studies on animal tissues or specific germ cells, our focus on human-derived MSCs bridges critical gaps in applicability. Previous studies on SSCs and BM-SCs highlight their potential but underscore challenges in scalability and clinical translation, contrasting with our approach using readily available MSCs. 

Materials and Methods:
MSCs were mobilized from bone marrow using granulocyte colony-stimulating factor (G-CSF) and differentiated in vitro under controlled conditions. Key markers of meiosis progression such as DMC1, DAZL, Oct-4 were monitored, culminating in the development of functional spermatocytes suitable for IVF attempts. Results The study successfully differentiated MSCs into mature spermatocytes capable of fertilizing oocytes. Outcomes included viable embryos developed from fertilized oocytes and preserved for future use, highlighting the efficacy of MSC-derived gametes in reproductive technologies. 

Discussion:
Compared to conventional approaches focusing on SSCs or animal-derived stem cells, our study introduces MSCs as a versatile source for generating functional gametes. This approach addresses practical limitations associated with existing methods and opens new avenues for personalized infertility treatments. 

Conclusion:
This study demonstrates MSCs' potential to revolutionize male infertility treatments by producing functional spermatocytes. Further optimization and clinical validation are crucial to enhance the efficacy of MSC-based therapies, offering new hope to individuals and couples globally affected by infertility.
Biography:
Dr. Mohammad Mobashir has received M.Sc. in Molecular Lifesciences from Jacobs University Bremen, Germany and Ph.D. Biochemistry from Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany. As a system biologist, I am mainly interested in understanding complex human disease pathways, functions, biomarkers, and drug targets. Biological  functions mainly arise as a result of the integration of multiple processes interacting across a range of spatio-temporal scales. Aim of work is to develop theoretical approaches parallel to experimental validation and data integration which not only will address problems at specific scales and specific disease but also bridge scales at multiple levels in a computationally efficient and mathematically tractable way and finally, corelate and validate experimentally. Long-term aim is to develop novel laboratory technique which could make smooth, easy, cost effective, and minimize time for the final report generation so that timely diagnosis could start for the individual patient.

Abstract:
Cancer is a highly complex, heterogeneous, and robust disease and depending on the organs. Multi-level unwanted alterations are the major source for the conversion of normal cells into tumor cells and such heterogenous level of complexity are considered as the gravest barrier in the development of therapeutic approach or resistant to existing therapeutic approaches. In other words, we can say that intratumor cell population variability and complexity is a potential reason for poor efficacy of biomarker-based targeted cancer therapy. In a simplified way, cancer may also be defined as an outcome of multicellular organisms failing at several levels (because of aberrant signaling, metabolic problems, and genetic abnormalities). Following these alterations, the cell is known as a cancer cell since it no longer resembles a regular cell. Comparing this cell to the corresponding normal cell, it appears that its appearance and physiological activity are very different. These changes have the ability to influence inappropriate cell-fate decisions through cellular signaling pathways and networks. Here, we have developed our own approach termed as GECIP which integrates multi-omics and multi-level information including systems pharmacology, prediction of biomarkers and phenotypes and the final referring of the putative referring of the drug suitable for specific type of cancer therapeutics.

Abstract:
Cellular senescence, a state of irreversible cell cycle arrest, plays a pivotal role in aging and age-related disorders. Understanding senescence and identifying novel therapeutic strategies are critical for mitigating its pathological effects. In this study, we investigated the secretome and extracellular vesicles (EVs) derived from human trophoblast stem cells (hTSCs) for their potential anti-senescence properties. We found that the hTSC-S and EVs significantly suppressed the expression of key SASP-related mRNAs, including CXCL1, CXCL8, and GDF15. We found that the hTSC-S and EVPs are enriched in proteins involved in extracellular matrix remodeling, cell adhesion, and tissue repair, underscoring their anti-inflammatory impacts. The hTSC-S effectively reduced both the expression of SASP-related mRNAs and the secretion of their encoded proteins. These effects may be linked to decreased senescence-associated ?-galactosidase (SA-?-Gal) activity and reduced DNA damage. Furthermore, hTSC-S attenuated inflammatory signaling by inhibiting NF-?B phosphorylation, a major SASP regulator. In vivo analysis indicated that hTSC-S treatment decreased the levels of the pro-inflammatory marker CXCL1 and the aging marker GDF15. Our findings establish hTSC-S and EVs as promising candidates for senescence-targeted therapies, offering a novel strategy to address aging and age-related diseases.

Biography:
Dr. Kotb Abdelmohsen is a senior associate scientist at the NIH's National Institute on Aging (NIA), specializing in cellular senescence, aging, and molecular biology. With over two decades of research experience, Dr. Abdelmohsen has contributed significantly to understanding the mechanisms of aging and age-related diseases. His talk will focus on senescence-associated secretory phenotypes (SASP), extracellular vesicles (EVs), and their potential therapeutic applications.
Abstract:
Recurrent Respiratory Papillomatosis (RRP) is a rare, neoplastic disorder caused by chronic infection with Human Papillomavirus (HPV) type 6 or 11. RRP is characterized by growth of benign tumors (papillomas) in the upper aerodigestive tract, leading to significant morbidity due to airway obstruction and although rare, RRP has the potential for transformation to dysplasia or malignant cancer. The standard-of-care for RRP is frequent ablative procedures and currently there are no approved therapeutics. It is common for patients to require multiple surgeries to keep the breathing passage open. However, these frequent surgeries can lead to irreversible laryngotracheal scarring and disability, emphasizing the need for transformative new non-surgical treatment modalities. PRGN-2012 is a gorilla adenovirus-based gene therapy/immunotherapy designed to generate HPV6/11-specific T cell immunity in RRP patients. Phase 1 of our ongoing pivotal trial (NCT04724980) evaluates the safety and efficacy of PRGN-2012 in patients with RRP requiring a minimum of 3 surgeries in the 12 months prior to treatment. Patients received 4 subcutaneous (SQ) injections of PRGN-2012 over 12 weeks. The results from the 15 patients demonstrated that PRGN-2012 treatment was safe and well-tolerated and resulted in clinically significant benefit with a 50% rate of complete response. In Phase 2 portion of the pivotal study an additional 23 patients were treated at dose level 2. Our data indicated that the administration of PRGN2012 led to the development of systemic HPV-specific T cell response with a higher magnitude in responders as compared to nonresponses. Furthermore, neutralizing antibody (Nab) titer against gorilla adenovectors remained low in majority of patients after vaccine administration and no apparent correlation between NAb incidence or titer and clinical response was observed.

Biography:
Dr. Roshanak T. Semnani is an executive director, overseeing the Translational Research at Precigen, Inc. based in Maryland, USA.  She has her Ph.D. in Immunology from the University of Chicago and was at NIH prior to joining the company in 2018. She is an experienced multi-disciplinary senior executive with extensive expertise in the field of infectious disease, autoimmunity, and immuno-oncology along with drug development in Cell and Gene therapy, from preclinical to Immunological studies for clinical trials. Her experience involves combining basic and translational research for further understanding of the mechanisms of disease to develop strategies for which enable organizations to achieve their goals.   In addition, she serves on multiple Scientific Committees, and she is active as a reviewer for leading journals.
Biography:
Dr. Cheepsattayakorn  graduated  Doctor  of  Medicine  from  Chiang  Mai  Medical  School, Chiang  Mai  University, Chiang  Mai, Thailand  in  1986.  He  then  further  had  trained  in  Internal  Medicine,   Pulmonology, and  Radiology  at  Chiang  Mai  University  Medical School.  Recently, on  October  26, 2019, he  was  bestowed  the  Gold  Medal  Award (First-Class  Award)  from  the  Chiang  Mai  University  Medical  School  Alumni  Association  in  Chiang  Mai, Thailand  for  his  academic  and  medical  practice  excellence  for  cerebrating  the  60th  Anniversary  of  the  Chiang  Mai  University  Medical  School, Chiang  Mai, Thailand  that  was  established  on  October  28, 1959. He  has  very  high  experience  in  the  fields  of  Pulmonary  Diseases  and  Tuberculosis  including  Infectious  Diseases  and  Immunology.  He  has  numerous  scientific  publications, more  than  333  publications  both  in  national  and  international  journals  and  books, including  authored  textbook  of  COVID-19, “ Thailand’s  and  Global  Perspectives  of  COVID-19 ”, both  the  United  Kingdom  version (361  pages, first  edition  published  by  the  Medical  and  Research  Publications  in  2021)  and  the  United  States  of  America  version (367  pages, second  edition  published  by  the  Science  and  Education  Publishing  in  2022).  Recently, in  2022, he  published  a  Book  Chapter, entitled  “ COVID-19  and  Respiratory  System ”  in  a  Textbook, entitled  “ Chest  Medicine  in  Perspective ”  published  by  Thammasat  Printing  House, Bangkok, Thailand (736  pages).  In  2024, his  book  chapter, entitled  “ SARS-CoV-2 (COVID—19)  Variants  and  COVID-19  Vaccine  Efficacy ” (manuscript  no. 2024/BPR/2779)  was  published  by  the  BP  International  Publishers (UK, India)  in  a  medical  textbook, entitled  “ Medicine  and  Medical  Research : New  Perspectives ”.  

Abstract:
Identification  of  the respiratory and cardiovascular systems, particularly, pulmonary  arterial  hypertension (PAH), acute  cardiac  injury, and  venous  thromboembolism (VTE)  can  be  identified  in  long-term  effects  of  COVID-19, but the virus also affects the neurological system, bones, endocrine glands, include  acute respiratory distress syndrome (ARDS).  With  a  novel, and  severe  novel  coronavirus  infections, PAH  has been reported to complicate the course of illness for 13.4% and 21% of patients, respectively. PAH  is a serious complication of new coronavirus infection, increasing the likelihood of requiring mechanical ventilation, extracorporeal membrane oxygenation (ECMO), intensive  care  unit (ICU) care and even death.     Enhancing the long-term prognosis of patients and minimize the hospitalization rate and death due to such complications therefore, by  early  detecting high pulmonary artery pressure in patients  with  SARS-CoV-2.  As  revealed  by  previous  studies  and  reasons  described  by  the processes of immunological dysfunction, endothelial dysfunction, vascular leakage, and thrombotic microangiopathy that are comparable to those that cause pulmonary vascular disease, such  as  PAH  may be responsible for the effects of SARS-CoV-2 on pulmonary hemodynamics. On the other hand, reports of the study mechanism's depth and specificity are uncommon. A  recent  study  in  2024  conducted  by  Hou  et  al  using a functional enrichment analysis on the GEO database to identify common differentially expressed genes (C-DEGs) across the  PAH  and  COVID-19  datasets. The results of a screening of the key genes using three machine algorithms: LASSO, RF, and SVM-RFE-based  were  confirmed  by  the  validation  queue. The role of prioritized core genes  was  examined  by  using  the  gene  set  enrichment  analysis (GSEA). The regulatory networks including these DEGs, including TF-gene connections and TF-microRNA co-regulation  were  next  mapped  out. Molecular docking simulations, drug-protein  interaction  networks, and molecular dynamics simulations were employed to screen for possible therapeutic medicines. The  study findings are expected to offer a novel approach to elucidating the genetic connection between the aforementioned disorders. Additionally, CCL20 and  SELE  were found to be indicators of PAH  and  COVID-19 co-pathogenesis by various bioinformatics analyze and machine learning algorithms. Adaptive immune response, leukocyte, lymphocyte mediated immune responses, and proinflammatory response mediated by cytokines like IL-12, TNF-? were functionally enriched in these two hub genes. These two hub genes were selected for nomogram construction and their diagnostic value evaluated by machine learning. The nomogram was found to have high diagnostic value. Dendritic cells had the strongest connection with CCL20  and  SELE, followed by activated CD4 T cells, active dendritic cells, natural killer T cells, neutrophils, and plasmacytoid dendritic cells. Using only 2 reference genes, they were able to isolate 12 shared TFs and 25 shared TF-miRNAs.by FFL tool, This FFL among CCL20, miR-1256 and PPARG may be a novel regulatory module in PAH  complicated  with  COVID-19. It was hypothesized that AFLATOXIN  B1, 1-NITROPYRENR, and  FENRETINIDE  would be useful in treating PAH  complicated  with  COVID-19. Further molecular  dynamics  and  molecular docking simulations demonstrated that 1-nitropyrene had the most stable binding with CCL20  and  SELE. In conclusion, by  understanding the comorbidity of PAH  and  COVID-19 may be assisted by these angiogenesis  and  biomarkers connection between PAH  and  COVID-19.
Biography:
Eng-Poh Ng received his BSc. (Ind. Chem.) degree in 2004 from Universiti Teknologi Malaysia. He obtained his MSc. (Chem.) degree in 2006 and under the supervision of Prof. Dr. Halimaton Hamdan. Then, he received his PhD degree in 2009 from University of Upper Alsace, France under the supervision of Prof. Dr. Svetlana Mintova. He joined Universiti Sains Malaysia in 2010 as a Senior Lecturer before being promoted to Associate Professor in 2016. Currently, he has published more than 170 indexed journals including top-tier journals like Science, Chemistry of Materials, Green Chemistry, Chemical Engineering Journal, etc. His current H-index is 46 with a total citation of 6590. He was also one of the World's Top 2% Scientists in his research field listed by Stanford University since 2019 until 2022. His main research interests are synthesis, investigation and application of nanoporous silica-based materials for adsorption, catalysis and other advanced applications.

Abstract:
Mordenite is one of the most important industrial zeolites with two-dimensional pores (6.5 × 7.0 Å2 ? 2.5 × 5.7 Å2). It has widely been used in the agricultural, petrochemical and separation processes. However, the microporosity of mordenite limits its application in certain catalytic reactions involving bulky molecules, where the presence of small micropores creates a barrier to molecular diffusion. Furthermore, the restricted pore size of zeolites also lead to mass transfer for reactant molecules, causing coking and catalyst deactivation. In this work, highly active hierarchical mordenite zeolite with micro/mesoporosity (TM-n) for selective synthesis of cyclic acetals via acetylation reaction is reported. The hierarchical zeolite is synthesized using soft-templating approach with variations in octadecyltrimethoxysilane (OTMS/Al2O3 ratio, n = 0.2, 0.3 and 0.4) in precursor hydrogels. The results reveal that OTMS not only creates secondary mesoporosity in zeolite framework (larger mesopore volume, external surface area, average pore diameter), but also influences the crystallization process, altering the crystal morphology, crystallinity and Si/Al ratios. Among TM-n zeolites prepared, TM-0.3 hierarchical mordenite has the optimum OTMS amount incorporated while further increasing the OTMS amount leads to the formation of ANA/GIS intergrowth. Thanks to the accessible hierarchical porosity, reduced acidity and morphological effects, the TM-0.3 hierarchical mordenite exhibits excellent catalytic performance (84.1% conversion, TOF = 0.087 s?1, 61.5% dioxolane selectivity) in acetylation of glycerol and benzaldehyde (160 °C, 20 min) better than pristine mordenite. In addition, comparative catalytic tests with classical homogeneous and heterogeneous catalysts, including H2SO4, HCl, CH3COOH, H–Y, H-LTL, Na-X, Na-A, are performed. Furthermore, the catalytic performance is superior than of the pristine mordenite and other conventional homogeneous and zeolite-based catalysts. More importantly, the catalyst is reusable for five runs with minimal loss of activity (TOF = 0.087 ? 0.084 s?1), offering it as a potential acid catalyst for chemical productions involving bulky molecules. 
Biography:
Performance-driven professional with 20 years of experience in the health care and life sciences industry, with a strong focus on Digital Pathology and data sciences. Proven track record in running a global organization and building strategic partnerships with leading Pharma/Biotech companies with focus in oncology. Strong technical background in drug development process, companion diagnostic strategy, business development, genomics, pathology and clinical implementation of tissue and image-based assays. Ability to drive complex strategies forward and guide multi-disciplinary teams to success while managing a global team in a matrix environment. Significant achievements across professional services, product development, operations, and alliance management. Demonstrated success in solving key problems and implementing solutions leading to successful delivery of projects and establishment of partnerships as a trusted advisor, team leader and partner

Abstract: 
At BioAI, we develop world-leading machine learning technology to develop digital biomarker tests for patient selection and screening. The BioAI PredictX platform is capable of ingesting a range of data types, including Digital Pathology, Multiomics and Real-World Evidence. Using multimodal data, state-of-the-art AI methods, and integrated deep learning, we can build predictive and prognostic models across a wide range of therapeutic areas. BioAI has built numerous models that can be used to classify both molecular status and tissue biomarkers directly from H&E slides without the need for additional molecular or IHC testing.  PredictLung, currently in development, is an AI-powered digital test panel for NSCLC patient tumor tissue samples that can predict actionable mutations and biomarkers from H&E stained images.  This test leverages an existing H&E image (available as a standard diagnostic procedure) and is a rapid, generalizable screening test that can help guide therapy selection.
Biography:
Mao-Kuen Kuo received his B.S. and M.S. degrees in Civil Engineering from National Taiwan University, Republic of China, in 1977 and 1979, respectively, and Ph.D. degree in Civil Engineering from Northwestern University, United States of America, in 1984. Presently, he is a Distinguished Professor in the Institute of Applied Mechanics, National Taiwan University. He joined the faculty of National Taiwan University in 1984. His research work was mainly on Elastodynamic Fracture Mechanics and Nondestructive Evaluation, and has been switched to quantum dots and surface plasmon, recently. He was a recipient of the 1987 Teaching Award sponsored by the Ministry of Education, Republic of China. He was also recipients of the 1987, 1988, 1989 and 2002 Teaching Award sponsored by the College of Engineering, National Taiwan University.

Abstract:
This theoretical study explores the two-dimensional orbital motion of an optically bound heterodimer consisting of two gold nanoparticles (NPs) with different sizes, driven by circularly polarized light. This phenomenon arises from the interaction between the optical force and torque generated by the circularly polarized light and the reactive drag force from the surrounding medium. We calculate the optical forces exerted on each NP by analyzing the Maxwell’s stress tensor on their surfaces and simulate their trajectories using dynamic equations of motion. Our results demonstrate that, regardless of the initial conditions of the two NPs, they will become optically bound together, exhibiting rigid-body translation and rotation. Notably, the center of mass of the heterodimer undergoes an orbital revolution around a fixed point eventually. The heterodimer's orbital radius and direction of revolution are influenced by the size disparity between the two NPs. The circularly polarized light-manipulated heterodimer behaves like a boomerang, acting as a spinning rotor on a circular path. Additionally, each NP experiences spin motion, with the spin direction determined by the handedness of the circularly polarized light. These findings offer valuable insights into the optomechanical manipulation of non-monodisperse NP clusters using circularly polarized light.
Biography:
Mr. Deven Patel, the CEO, President and Cofounder of Global Institute of Stem Cell Therapy and Research (GIOSTAR) is based in San Diego, California, U.S.A. GIOSTAR was formed with the vision to provide affordable stem cell based therapies to the masses around the world suffering from many incurable degenerative diseases. He was honored with USA Congressional Recognition for his efforts in spreading the advancement of stem cell science around the world.  He was also bestowed upon Asian Heritage Award for his business leadership in the field of stem cell science.  GIOSTAR under the leadership of Mr. Patel has developed several stem cell research and treatment facilities around the globe including USA, Mexico, India, Costa Rica plus few more in near future in China, Thailand, Greece , Bahamas, Dubai and Australia. GIOSTAR, in collaborations with Govt. of Gujarat, India, developing world's largest Stem Cell Treatment Hospital in India.

Abstract:
The life expectancy or longevity is the number of years a person is expected to live. It depends on various factors including genetics, gender, individual life style and socio-economic factors. According to the United Nations, the global life expectancy as of 2023 was 70.8 years for males and 76.0 years for females, for an average of 73.4 years. Longevity, vary significantly by region as well as by country.  Various scientific discoveries in the recent decades, in the area of human health, have contributed towards improvement in longevity. Biologically, human aging is associated with reduced tissue regeneration, increased degenerative disease, and cancer. Stem cells persist throughout life in numerous mammalian tissues, replacing cells lost to homeostatic turnover, injury, and disease. With the aging process, stem cell function declines in numerous tissues as a result of gate-keeping tumor suppressor expression, DNA damage, changes in cellular physiology, and environmental changes in tissues.  Like all cells, stem cell aging is determined partly by the accumulation of damage over time. Declines in stem cell function during aging can be attributed to telomere shortening, DNA damage, and mitochondrial damage. Mitochondrial activity, tissue growth, and metabolic rates during development can also influence life span and the rates of cellular aging at later stages of life. The criticality of normal mitochondrial function, required for embryonic stem cell proliferation, regulating differentiation, and preventing the emergence of tumorigenic cells during the process of differentiation, was demonstrated by GIOSTAR Chairman Dr Anand Srivastava in his work at UCLA. The author showed that by arresting the mitochondrial function the cell division ability of stem cells were enhanced. This was a significant finding as the role of genes associated with pluripotency were linked to the mitochondrial function. Indirectly, it was observed that aging can be controlled by modulating the mitochondrial function.  GIOSTAR is the pioneer and leading institute working in area of stem cells and regenerative medicine. Under the scientific leadership of Dr Anand Srivastava, the institute developing and providing the therapeutic interventions harnessing the power of stem cells.
Biography:
Sarita Khemani, MD is a Clinical Associate Professor of Medicine and Neurosurgery Hospitalist at Stanford University School of Medicine. Her clinical duties involve managing medical co-morbidities, with the primary goal of preventing post operative complications in the hospital setting. She is also the head of Stanford’s Lifestyle Medicine Stress Neuroscience pillar. Dr. Khemani is actively involved in medical education, serving as the Director of the Perioperative Medicine Rotation for medical students. She has been awarded for excellence in teaching and has presented at various local, regional, and national conferences. Her work focuses on integrating clinical practice with advancements in neuroscience and lifestyle medicine, with a commitment to enhancing patient care and medical training.

Abstract:
With aging population, the number of patients undergoing surgeries annually are increasing. Post-operative delirium (POD) is one of the most common and serious complications after surgery, affecting 10% to 50% of surgical patients. POD significantly contributes to patient morbidity, prolonged hospital stays, and increased healthcare costs. Moreover, research indicates that POD can have long term consequences, including cognitive impairment that may persist and potentially contribute to neurodegeneration.In this talk, we will discuss the current state of post-operative delirium research, highlighting the heterogeneity in risk factors, clinical presentation, and underlying mechanisms. We will briefly discuss updates on current treatment approaches and their limitations. We will go over why one-size-fits-all approach needs to shift towards a precision medicine model tailored to individual patient profiles. Drawing from the broader literature, we will explore the application of biomarkers indicating oxidative stress, neuroglial damage, and inflammatory responses that could help recognize patients with preoperative vulnerability to subsequent cognitive decline. We will conclude by discussing the challenges and opportunities in implementing precision medicine strategies in post operative delirium prevention, including the need for interdisciplinary collaboration and the integration of biomarker assessments into routine clinical practice. By implementing a precision medicine approach, we can develop personalized, targeted practices to mitigate the risk of post operative delirium and improve outcomes for our aging population.
Biography:
Dr. Navneet Boddu is a specialist in Regenerative Medicine. He is triple board-certified in Pain Medicine, Anesthesiology and Echo-cardiogram with more than 25 years of experience.  At Advanced Pain and Regenerative Specialists, Dr. Boddu provides personalized treatments for his patients’ spine and joint disorders. Using the latest medical technology and evidence-based cellular therapies, like autologous bone marrow, fat stem cells and other biologics, Dr. Boddu uses the patient’s own cells to regenerate and heal joints, tendons, ligaments, and spine disorders. 

Dr Boddu is a five-time Top Doctor in Pain Medicine and Anesthesiology in San Diego County. He is a contributing author of chapters about nerve blocks and interventional pain injections in the textbook Interventional Orthopedics Procedures. He also co-authored chapters in the Textbook of Regenerative Medicine. He conducted FDA-authorized umbilical cord stem cell treatments for patients with severe COVID.  Dr Boddu is an anesthesiologist at Scripps Medical Center, Encinitas. He is a member of the scientific board at Therapeutic Solutions International Inc., a  biotech company and industry leader in stem cell, exosome, and immunotherapy technologies. Dr. Boddu was chairman of the Anesthesiology Department at TriCity Medical Center from 2015 to 2017. Prior to that he was chairman at Providence Mission Hospital Laguna Beach, where he practiced Pain Medicine and Anesthesiology. 

Abstract:
Background: Umbilical cord-derived Mesenchymal Stem Cells (UC-MSCs) exert potential anti-inflammatory properties and in previous studies have shown anti-fibrotic effects in animal models of liver fibrosis and cirrhosis. In this proof-of-concept, first in animal study, we examined the effect of human UC-MSCs combined with small extracellular vesicles (SEVs) on liver fibrosis in a rat model of fibrosis and cirrhosis. 
 
Methods: Human UC-MSCs were cultured via a xenofree, explant process with modifications to passage 3 and SEVs were obtained from supernatant of the cultured UC-MSCs. Two groups, each of 14 Wistar male rats, aged 7-8 weeks, received oral CCL4 with olive oil (1ml/kg) twice weekly for a total of 6 weeks from week 1 to week 6. Starting at week 4, after all animals in both groups received 6 induction doses of CCL4, one group of 14 animals received three weekly IV doses of UC-MSC + SEV at a dose of 1 million MSCs and 5 billion SEV each. All animals alive at week 7 were sacrificed. 14 animals who received CCL4 alone from weeks 4-7 were control animals. The primary objectives were to examine the survival differences between two groups of animals and the effect of UC-MSC + SEV on fibrosis stage by Trichrome and Sirius Red. 
 
Results: Six animals in the control group died before week 6 whereas all 14 animals in the US-MSC + SEV were alive at week 6. The survival difference at 6 weeks was significant between two groups (100% with UC-MSC + SEV vs 57%, p=0.0066). The necropsy of 6 dead animals in the control group showed cirrhosis in all 6 animals. The comparison between 8 animals in the control group and 14 animals receiving US-MSC + SEV is shown in Table1. Notably, liver fibrosis stage by both Trichrome and Sirius Red was significantly lower in the UC-MSC + SEV group. While there were no animals in the UC-MSC + SEV group had cirrhosis, there were 12 animals in the control group with cirrhosis. There were corresponding favorable liver biochemistry and liver immunohistochemistry changes in the UC-MSC +SEV group.
 
Conclusion: Human UC-MSCs cultured to passage 3 in combination with SEV significantly improved the survival of the animals receiving lowdose CCL4. UC-MSC + SEV dramatically reduced the development of fibrosis and cirrhosis induced by CCL4. Further studies are needed to validate our observations and to test the combination of UC-MSC + SEV in other animal models and in humans with fibrotic liver diseases and liver failure.  
Biography:
Priya Hays, M.S., Ph.D. is an accomplished science writer, having written and published five books as well as having authored over twenty publications in journals as varied as the Bulletin of Science, Technology and Society, L’Esprit Createur, Interdisciplinary Literary Studies, Genetics in Medicine, Journal of Clinical Investigation and Studies, and Preventive Medicine, Epidemiology and Public Health and Journal of Clinical and Translational Research.  The Second Edition of her book Advancing Healthcare Through Personalized Medicine received critical acclaim, and she served as Guest Editor for a volume on cancer immunotherapies in the Cancer Treatment and Research series, both published by Springer Nature.  Her work has been featured is Open Access Government UK and Research Features UK. Her latest book is a compilation of papers entitled “A Dialectical Mind: Essays in Literary Studies, Science and Medicine” published by Eliva Press. She completed her postdoctoral research fellowship in the Division of Hematology/Oncology, Department of Medicine, at Dartmouth Medical School. She has an A.B. with Honors from Dartmouth College in Biochemistry and Comparative Literature, an M.S. in Genetics from the University of California, Davis, and a Ph.D. in Literature from the University of California, San Diego

Abstract:
Immune checkpoint blockade has evolved in the realm of cancer immunotherapies to become standard of care in front-line settings, as well as in adjuvant and even neoadjuvant settings, especially in immunogenic tumors such as advanced melanoma. However, while many patients respond to these therapies with long-term robust clinical outcomes, there exists a considerable degree of non-responders. Studies have attributed this clinical situation to a number of correlative and causative factors, and a new generation of therapies are being developed to be used alone or in combination with anti-CTLA-4 and anti-PD-1 therapies to improve survival and overall response rates. This talk will discusses the next generation immune checkpoint inhibitors against LAG-3, TIGIT, and TIM-3 and highlights emerging insights into their mechanisms of action. Another approach is the use of tumor infiltrating lymphocytes, discussed in the context of feasibility and randomized trials. These two approaches outlined in this paper explain distinct avenues to address the issue of non-responders and provide ways to circumvent the difficulties they pose for patients and in the clinic. This talk concludes on future directions in the form of reverse translation methods and their use and application for addressing non-responders to immune checkpoint blockade.
Poster Session
Biography:
Dr. Walter D. Furlan received his PhD in Physics from the National University of La Plata (Argentina) in 1988. He is now Professor of Optics at the University of Valencia (Spain) since 2010. His research spans the field of Optics, initially focusing on phase-space formalisms and later on the design and applications of diffractive optical elements with aperiodic geometries.: He is currently the co-director of the "Diffractive Optics Group", where the research primarily targets the design of structured diffractive lenses and their applications in optical trapping and ophthalmology.

Abstract:
In this communication, we present a new kind of diffractive-kinoform lenses characterized by the phase distribution of the Silver Mean (SM) sequence. The focusing properties of these aperiodic lenses are analytically studied. It is shown that, under monochromatic illumination, the SM lenses direct most of the incoming light into four foci whose focal lengths are related to the Silver ratio. Two different photonics applications are proposed. First, we present the implementation of multi-trap optical tweezers. We show that The quadrifocal- kinoform feature of the SM lenses enables multiple axial trapping, providing an alternative method for
three-dimensional manipulation. Positioning particles along a line at controlled distances allows for the exploration of interactions between them under laser irradiation.
Second, we propose the application of this approach in ophthalmology to design a multifocal intraocular lens. Multifocal lenses are currently the most popular surgical alternative for correcting presbyopia and cataracts. We show that under broadband illumination, the superposition of the different foci creates an extended depth of focus in the intraocular lens. Finally, the application of this type of aperiodic lens in other fields, such as microscopy or quantum computing, is also suggested.